Phase-sensitive measurements of order parameters for ultracold atoms through two-particle interferometry.
نویسندگان
چکیده
Nontrivial symmetry of order parameters is crucial in some of the most interesting quantum many-body states of ultracold atoms as well as condensed matter systems. Examples in cold atoms include p-wave Feshbach molecules and d-wave paired states of fermions that could be realized in optical lattices in the Hubbard regime. Identifying these states in experiments requires measurements of the relative phase of different components of the entangled pair wave function. We propose and discuss two schemes for such phase-sensitive measurements, based on two-particle interference revealed in atom-atom or atomic density correlations. Our schemes can also be used for relative phase measurements for nontrivial particle-hole order parameters, such as d-density wave order.
منابع مشابه
Phase Sensitive Measurements of Order Parameters for Ultracold Atoms through Two Particles Interferometry
متن کامل
Atom interferometry with trapped Bose–Einstein condensates: impact of atom–atom interactions
Interferometry with ultracold atoms promises the possibility of ultraprecise and ultrasensitive measurements in many fields of physics, and is the basis of our most precise atomic clocks. Key to a high sensitivity is the possibility to achieve long measurement times and precise readout. Ultracold atoms can be precisely manipulated at the quantum level and can be held for very long times in trap...
متن کاملQuantum coherent tractor beam effect for atoms trapped near a nanowaveguide
We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold (23)Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tra...
متن کاملObservation of quantum criticality with ultracold atoms in optical lattices.
Quantum criticality emerges when a many-body system is in the proximity of a continuous phase transition that is driven by quantum fluctuations. In the quantum critical regime, exotic, yet universal properties are anticipated; ultracold atoms provide a clean system to test these predictions. We report the observation of quantum criticality with two-dimensional Bose gases in optical lattices. On...
متن کاملEntanglement of atoms via cold controlled collisions
The controlled manipulation of entangled states of N particle systems is fundamental to the study of basic aspects of quantum theory [1,2], and provides the basis of applications such as quantum computing and quantum communications [3,4]. Engineering entanglement in real physical systems requires precise control of the Hamiltonian operations and a high degree of coherence. Achieving these condi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 106 11 شماره
صفحات -
تاریخ انتشار 2011